ACID RAIN
Acid rain is rain or any other form of precipitation that is unusually acidic, i.e. elevated levels of hydrogen ions (low pH). It can have harmful effects on plants, aquatic animals, and infrastructure through the process of wet deposition. Acid rain is caused by emissions of compounds of ammonium, carbon, nitrogen, and sulfur which react with the water molecules in the atmosphere to produce acids. Governments have made efforts since the 1970s to reduce the production of sulfuric oxides into the Earth's atmosphere with positive results. However, it can also be caused naturally by the splitting of nitrogen compounds by the energy produced by lightning strikes, or the release of sulfur dioxide into the atmosphere by volcano eruptions.
Definition
"Acid rain" is a popular term referring to the deposition of wet (rain, snow, sleet, fog and cloudwater, dew) and dry (acidifying particles and gases) acidic components. A more accurate term is “acid deposition”. Distilled water, once carbon dioxide is removed, has a neutral pH of 7. Liquids with a pH less than 7 are acidic, and those with a pH greater than 7 are bases. “Clean” or unpolluted rain has a slightly acidic pH of about 5.2, because carbon dioxide and water in the air react together to form carbonic acid, a weak acid (pH 5.6 in distilled water), but unpolluted rain also contains other chemicals.[1]
H2O (l) + CO2 (g) → H2CO3 (aq)
Carbonic acid then can ionize in water forming low concentrations of hydronium and carbonate ions:
2 H2O (l) + H2CO3 (aq) CO32− (aq) + 2 H3O+ (aq)
Acid deposition as an environmental issue would include additional acids to H2CO3.
History
Since the Industrial Revolution, emissions of sulfur dioxide and nitrogen oxides to the atmosphere have increased.[2][3] In 1852, Robert Angus Smith was the first to show the relationship between acid rain and atmospheric pollution in Manchester, England.[4] Though acidic rain was discovered in 1852, it was not until the late 1960s that scientists began widely observing and studying the phenomenon. The term "acid rain" was generated in 1972.[5] Canadian Harold Harvey was among the first to research a "dead" lake. Public awareness of acid rain in the U.S increased in the 1970s after the New York Times promulgated reports from the Hubbard Brook Experimental Forest in New Hampshire of the myriad deleterious environmental effects demonstrated to result from it.[6][7]
Occasional pH readings in rain and fog water of well below 2.4 have been reported in industrialized areas.[2] Industrial acid rain is a substantial problem in Europe, China,[8][9] Russia and areas down-wind from them. These areas all burn sulfur-containing coal to generate heat and electricity.[10] The problem of acid rain not only has increased with population and industrial growth, but has become more widespread. The use of tall smokestacks to reduce local pollution has contributed to the spread of acid rain by releasing gases into regional atmospheric circulation.[11][12] Often deposition occurs a considerable distance downwind of the emissions, with mountainous regions tending to receive the greatest deposition (simply because of their higher rainfall). An example of this effect is the low pH of rain (compared to the local emissions) which falls in Scandinavia.
History of acid rain in the United States
In 1980, the U.S. Congress passed an Acid Deposition Act. This Act established a 10-year research program under the direction of the National Acidic Precipitation Assessment Program (NAPAP). NAPAP looked at the entire problem. It enlarged a network of monitoring sites to determine how acidic the precipitation actually was, and to determine long term trends, and established a network for dry deposition. It looked at the effects of acid rain and funded research on the effects of acid precipitation on freshwater and terrestrial ecosystems, historical buildings, monuments, and building materials. It also funded extensive studies on atmospheric processes and potential control programs.
Since 1998, Harvard University wraps some of the bronze and marble statues on its campus, such as this tortoise-borne "Chinese stele", with waterproof covers every winter, in order to protect them from erosion caused by acid rain (or, actually, acid snow)[14]
In 1991, NAPAP provided its first assessment of acid rain in the United States. It reported that 5% of New England Lakes were acidic, with sulfates being the most common problem. They noted that 2% of the lakes could no longer support Brook Trout, and 6% of the lakes were unsuitable for the survival of many species of minnow. Subsequent Reports to Congress have documented chemical changes in soil and freshwater ecosystems, nitrogen saturation, decreases in amounts of nutrients in soil, episodic acidification, regional haze, and damage to historical monuments.
Meanwhile, in 1990, the US Congress passed a series of amendments to the Clean Air Act. Title IV of these amendments established the Acid Rain Program, a cap and trade system designed to control emissions of sulfur dioxide and nitrogen oxides. Title IV called for a total reduction of about 10 million tons of SO2 emissions from power plants. It was implemented in two phases. Phase I began in 1995, and limited sulfur dioxide emissions from 110 of the largest power plants to a combined total of 8.7 million tons of sulfur dioxide. One power plant in New England (Merrimack) was in Phase I. Four other plants (Newington, Mount Tom, Brayton Point, and Salem Harbor) were added under other provisions of the program. Phase II began in 2000, and affects most of the power plants in the country.
During the 1990s, research has continued. On March 10, 2005, EPA issued the Clean Air Interstate Rule (CAIR). This rule provides states with a solution to the problem of power plant pollution that drifts from one state to another. CAIR will permanently cap emissions of SO2 and NOx in the eastern United States. When fully implemented, CAIR will reduce SO2 emissions in 28 eastern states and the District of Columbia by over 70 percent and NOx emissions by over 60 percent from 2003 levels.[15]
Overall, the Program's cap and trade program has been successful in achieving its goals. Since the 1990s, SO2 emissions have dropped 40%, and according to the Pacific Research Institute, acid rain levels have dropped 65% since 1976.[16][17] However, this was significantly less successful than conventional regulation in the European Union, which saw a decrease of over 70% in SO2 emissions during the same time period.[18]
In 2007, total SO2 emissions were 8.9 million tons, achieving the program's long term goal ahead of the 2010 statutory deadline.[19]
The EPA estimates that by 2010, the overall costs of complying with the program for businesses and consumers will be $1 billion to $2 billion a year, only one fourth of what was originally predicted.[16]
Emissions of chemicals leading to acidification
The most important gas which leads to acidification is sulfur dioxide. Emissions of nitrogen oxides which are oxidized to form nitric acid are of increasing importance due to stricter controls on emissions of sulfur containing compounds. 70 Tg(S) per year in the form of SO2 comes from fossil fuel combustion and industry, 2.8 Tg(S) from wildfires and 7-8 Tg(S) per year from volcanoes.[20]
Natural phenomena
The principal natural phenomena that contribute acid-producing gases to the atmosphere are emissions from volcanoes and those from biological processes that occur on the land, in wetlands, and in the oceans. The major biological source of sulfur containing compounds is dimethyl sulfide.
Nitric acid in rainwater is an important source of fixed nitrogen for plant life, and is also produced by electrical acitivity in the atmosphere such as lightning.
Acidic deposits have been detected in glacial ice thousands of years old in remote parts of the globe.[11]
Human activity
The coal-fired Gavin Power Plant in Cheshire, Ohio
The principal cause of acid rain is sulfur and nitrogen compounds from human sources, such as electricity generation, factories, and motor vehicles. Coal power plants are one of the most polluting. The gases can be carried hundreds of kilometres in the atmosphere before they are converted to acids and deposited. In the past, factories had short funnels to let out smoke, but this caused many problems locally; thus, factories now have taller smoke funnels. However, dispersal from these taller stacks causes pollutants to be carried farther, causing widespread ecological damage. However, livestock production also plays a major role. It is responsible for almost two-thirds of all anthropogenic sources of ammonia produced through human activities, which contributes significantly to acid rain.[21]
Chemical processes
Combustion of fuels creates sulfur dioxide and nitric oxides. They are converted into sulfuric acid and nitric acid.[22]
Gas phase chemistry
In the gas phase sulfur dioxide is oxidized by reaction with the hydroxyl radical via an intermolecular reaction [4]:
SO2 + OH• → HOSO2•
which is followed by:
HOSO2• + O2 → HO2• + SO3
In the presence of water, sulfur trioxide (SO3) is converted rapidly to sulfuric acid:
SO3 (g) + H2O (l) → H2SO4 (l)
Nitrogen dioxide reacts with OH to form nitric acid:
NO2 + OH• → HNO3
Chemistry in cloud droplets
When clouds are present, the loss rate of SO2 is faster than can be explained by gas phase chemistry alone. This is due to reactions in the liquid water droplets.
Hydrolysis
Sulfur dioxide dissolves in water and then, like carbon dioxide, hydrolyses in a series of equilibrium reactions:
SO2 (g) + H2O SO2•H2O
SO2•H2O H+ + HSO3−
HSO3− H+ + SO32−
Oxidation
There are a large number of aqueous reactions that oxidize sulfur from S(IV) to S(VI), leading to the formation of sulfuric acid. The most important oxidation reactions are with ozone, hydrogen peroxide and oxygen (reactions with oxygen are catalyzed by iron and manganese in the cloud droplets).
For more information see Seinfeld and Pandis (1998).[4]
Acid deposition
Wet deposition
Wet deposition of acids occurs when any form of precipitation (rain, snow, etc.) removes acids from the atmosphere and delivers it to the Earth's surface. This can result from the deposition of acids produced in the raindrops (see aqueous phase chemistry above) or by the precipitation removing the acids either in clouds or below clouds. Wet removal of both gases and aerosols are both of importance for wet deposition.
Dry deposition
Acid deposition also occurs via dry deposition in the absence of precipitation. This can be responsible for as much as 20 to 60% of total acid deposition.[23] This occurs when particles and gases stick to the ground, plants or other surfaces.
Adverse effects
This chart shows that not all fish, shellfish, or the insects that they eat can tolerate the same amount of acid; for example, frogs can tolerate water that is more acidic (i.e., has a lower pH) than trout.
Acid rain has been shown to have adverse impacts on forests, freshwaters and soils, killing insect and aquatic life-forms as well as causing damage to buildings and having impacts on human health.
Surface waters and aquatic animals
Both the lower pH and higher aluminium concentrations in surface water that occur as a result of acid rain can cause damage to fish and other aquatic animals. At pHs lower than 5 most fish eggs will not hatch and lower pHs can kill adult fish. As lakes and rivers become more acidic biodiversity is reduced. Acid rain has eliminated insect life and some fish species, including the brook trout in some lakes, streams, and creeks in geographically sensitive areas, such as the Adirondack Mountains of the United States.[24] However, the extent to which acid rain contributes directly or indirectly via runoff from the catchment to lake and river acidity (i.e., depending on characteristics of the surrounding watershed) is variable. The United States Environmental Protection Agency's (EPA) website states: "Of the lakes and streams surveyed, acid rain caused acidity in 75 percent of the acidic lakes and about 50 percent of the acidic streams".[24]
Soils
Soil biology and chemistry can be seriously damaged by acid rain. Some microbes are unable to tolerate changes to low pHs and are killed.[25] The enzymes of these microbes are denatured (changed in shape so they no longer function) by the acid. The hydronium ions of acid rain also mobilize toxins such as aluminium, and leach away essential nutrients and minerals such as magnesium.[26]
2 H+ (aq) + Mg2+ (clay) 2 H+ (clay) + Mg2+ (aq)
Soil chemistry can be dramatically changed when base cations, such as calcium and magnesium, are leached by acid rain thereby affecting sensitive species, such as sugar maple (Acer saccharum).[27][28]
Forests and other vegetation
Effect of acid rain on a forest, Jizera Mountains, Czech Republic
Adverse effects may be indirectly related to acid rain, like the acid's effects on soil (see above) or high concentration of gaseous precursors to acid rain. High altitude forests are especially vulnerable as they are often surrounded by clouds and fog which are more acidic than rain.
Other plants can also be damaged by acid rain, but the effect on food crops is minimized by the application of lime and fertilizers to replace lost nutrients. In cultivated areas, limestone may also be added to increase the ability of the soil to keep the pH stable, but this tactic is largely unusable in the case of wilderness lands. When calcium is leached from the needles of red spruce, these trees become less cold tolerant and exhibit winter injury and even death.[29][30]
Human health
Scientists have suggested direct links to human health.[31] Fine particles, a large fraction of which are formed from the same gases as acid rain (sulfur dioxide and nitrogen dioxide), have been shown to cause illness and premature deaths such as cancer and other diseases.[32] For more information on the health effects of aerosols see particulate health effects.
Other adverse effects
Effect of acid rain on statues
Acid rain can also damage buildings and historic monuments, especially those made of rocks such as limestone and marble containing large amounts of calcium carbonate. Acids in the rain react with the calcium compounds in the stones to create gypsum, which then flakes off.
CaCO3 (s) + H2SO4 (aq) CaSO4 (aq) + CO2 (g) + H2O (l)
The effects of this are commonly seen on old gravestones, where acid rain can cause the inscriptions to become completely illegible. Acid rain also increases the oxidation rate of metals, in particular copper and bronze.[33][34]
Affected areas
Places with significant impact by acid rain around the globe include most of eastern Europe from Poland northward into Scandinavia,[35] the eastern third of the United States,[36] and South Western Canada. Other affected areas include the South Eastern coast of China and Taiwan.
Potential problem areas in the future
Places like much of Southeast Asia (Indonesia, Malaysia and Thailand), Western South Africa (the country), Southern India and Sri Lanka and even West Africa (countries like Ghana, Togo and Nigeria) could all be prone to acidic rainfall in the future.
Prevention methods
Technical solutions
In the United States, many coal-burning power plants use Flue gas desulfurization (FGD) to remove sulfur-containing gases from their stack gases. An example of FGD is the wet scrubber which is commonly used in the U.S. and many other countries. A wet scrubber is basically a reaction tower equipped with a fan that extracts hot smoke stack gases from a power plant into the tower. Lime or limestone in slurry form is also injected into the tower to mix with the stack gases and combine with the sulfur dioxide present. The calcium carbonate of the limestone produces pH-neutral calcium sulfate that is physically removed from the scrubber. That is, the scrubber turns sulfur pollution into industrial sulfates.
In some areas the sulfates are sold to chemical companies as gypsum when the purity of calcium sulfate is high. In others, they are placed in landfill. However, the effects of acid rain can last for generations, as the effects of pH level change can stimulate the continued leaching of undesirable chemicals into otherwise pristine water sources, killing off vulnerable insect and fish species and blocking efforts to restore native life.
Automobile emissions control reduces emissions of nitrogen oxides from motor vehicles.
International treaties
A number of international treaties on the long range transport of atmospheric pollutants have been agreed e.g. Sulphur Emissions Reduction Protocol under the Convention on Long-Range Transboundary Air Pollution.
Emissions trading
See also: Acid Rain Program
Main article: Emissions trading
In this regulatory scheme, every current polluting facility is given or may purchase on an open market an emissions allowance for each unit of a designated pollutant it emits. Operators can then install pollution control equipment, and sell portions of their emissions allowances they no longer need for their own operations, thereby recovering some of the capital cost of their investment in such equipment. The intention is to give operators economic incentives to install pollution controls.
The first emissions trading market was established in the United States by enactment of the Clean Air Act Amendments of 1990. The overall goal of the Acid Rain Program established by the Act[37] is to achieve significant environmental and public health benefits through reductions in emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx), the primary causes of acid rain. To achieve this goal at the lowest cost to society, the program employs both regulatory and market based approaches for controlling air pollution.
What is Acid Rain and What Causes It?
________________________________________
"Acid rain" is a broad term used to describe several ways that acids fall out of the atmosphere. A more precise term is acid deposition, which has two parts: wet and dry.
Wet deposition refers to acidic rain, fog, and snow. As this acidic water flows over and through the ground, it affects a variety of plants and animals. The strength of the effects depend on many factors, including how acidic the water is, the chemistry and buffering capacity of the soils involved, and the types of fish, trees, and other living things that rely on the water.
Dry deposition refers to acidic gases and particles. About half of the acidity in the atmosphere falls back to earth through dry deposition. The wind blows these acidic particles and gases onto buildings, cars, homes, and trees. Dry deposited gases and particles can also be washed from trees and other surfaces by rainstorms. When that happens, the runoff water adds those acids to the acid rain, making the combination more acidic than the falling rain alone.
Prevailing winds blow the compounds that cause both wet and dry acid deposition across state and national borders, and sometimes over hundreds of miles. Scientists discovered, and have confirmed, that sulfur dioxide (SO2) and nitrogen oxides (NOx) are the primary causes of acid rain. In the US, About 2/3 of all SO2 and 1/4 of all NOx comes from electric power generation that relies on burning fossil fuels like coal.
Acid rain occurs when these gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds. Sunlight increases the rate of most of these reactions. The result is a mild solution of sulfuric acid and nitric acid.
How Do We Measure Acid Rain?
Acid rain is measured using a scale called "pH." The lower a substance's pH, the more acidic it is. Pure water has a pH of 7.0. Normal rain is slightly acidic because carbon dioxide dissolves into it, so it has a pH of about 5.5. As of the year 2000, the most acidic rain falling in the US has a pH of about 4.3.
Acid rain's pH, and the chemicals that cause acid rain, are monitored by two networks, both supported by EPA. The National Atmospheric Deposition Program measures wet deposition, and its Web site features maps of rainfall pH (follow the link to the isopleth maps) and other important precipitation chemistry measurements.
The Clean Air Status and Trends Network (CASTNET) measures dry deposition. Its web site features information about the data it collects, the measuring sites, and the kinds of equipment it uses.
Effects of Acid Rain
Acid rain causes acidification of lakes and streams and contributes to damage of trees at high elevations (for example, red spruce trees above 2,000 feet) and many sensitive forest soils. In addition, acid rain accelerates the decay of building materials and paints, including irreplaceable buildings, statues, and sculptures that are part of our nation's cultural heritage. Prior to falling to the earth, SO2 and NOx gases and their particulate matter derivatives, sulfates and nitrates, contribute to visibility degradation and harm public health.
What Society Can Do About Acid Deposition
There are several ways to reduce acid deposition, more properly called acid deposition, ranging from societal changes to individual action.
Understand acid deposition's causes and effects
To understand acid deposition's causes and effects and track changes in the environment, scientists from EPA, state governments, and academic study acidification processes. They collect air and water samples and measure them for various characteristics like pH and chemical composition, and they research the effects of acid deposition on human-made materials such as marble and bronze. Finally, scientists work to understand the effects of sulfur dioxide (SO2) and nitrogen oxides (NOx) - the pollutants that cause acid deposition and fine particles - on human health.
To solve the acid rain problem, people need to understand how acid rain causes damage to the environment. They also need to understand what changes could be made to the air pollution sources that cause the problem. The answers to these questions help leaders make better decisions about how to control air pollution and therefore how to reduce - or even eliminate - acid rain. Since there are many solutions to the acid rain problem, leaders have a choice of which options or combination of options are best. The next section describes some of the steps that can be taken to reduce, or even eliminate, the acid deposition problem.
Clean up smokestacks and exhaust pipes
Almost all of the electricity that powers modern life comes from burning fossil fuels like coal, natural gas, and oil. acid deposition is caused by two pollutants that are released into the atmosphere, or emitted, when these fuels are burned: sulfur dioxide (SO2) and nitrogen oxides (NOx).
Coal accounts for most US sulfur dioxide (SO2) emissions and a large portion of NOx emissions. Sulfur is present in coal as an impurity, and it reacts with air when the coal is burned to form SO2. In contrast, NOx is formed when any fossil fuel is burned.
There are several options for reducing SO2 emissions, including using coal containing less sulfur, washing the coal, and using devices called scrubbers to chemically remove the SO2 from the gases leaving the smokestack. Power plants can also switch fuels; for example burning natural gas creates much less SO2 than burning coal. Certain approaches will also have additional benefits of reducing other pollutants such as mercury and carbon dioxide. Understanding these "co-benefits" has become important in seeking cost-effective air pollution reduction strategies. Finally, power plants can use technologies that don't burn fossil fuels. Each of these options has its own costs and benefits, however; there is no single universal solution.
Similar to scrubbers on power plants, catalytic converters reduce NOx emissions from cars. These devices have been required for over twenty years in the US, and it is important to keep them working properly and tailpipe restrictions have been tightened recently. EPA has also made, and continues to make, changes to gasoline that allows it to burn cleaner.
Use alternative energy sources
There are other sources of electricity besides fossil fuels. They include: nuclear power, hydropower, wind energy, geothermal energy, and solar energy. Of these, nuclear and hydropower are used most widely; wind, solar, and geothermal energy have not yet been harnessed on a large scale in this country.
There are also alternative energies available to power automobiles, including natural gas powered vehicles, battery-powered cars, fuel cells, and combinations of alternative and gasoline powered vehicles.
All sources of energy have environmental costs as well as benefits. Some types of energy are more expensive to produce than others, which means that not all Americans can afford all types of energy. Nuclear power, hydropower, and coal are the cheapest forms today, but changes in technologies and environmental regulations may shift that in the future. All of these factors must be weighed when deciding which energy source to use today and which to invest in for tomorrow.
Restore a damaged environment
Acid deposition penetrates deeply into the fabric of an ecosystem, changing the chemistry of the soil as well as the chemistry of the streams and narrowing, sometimes to nothing, the space where certain plants and animals can survive. Because there are so many changes, it takes many years for ecosystems to recover from acid deposition, even after emissions are reduced and the rain becomes normal again. For example, while the visibility might improve within days, and small or episodic chemical changes in streams improve within months, chronically acidified lakes, streams, forests, and soils can take years to decades or even centuries (in the case of soils) to heal.
However, there are some things that people do to bring back lakes and streams more quickly. Limestone or lime (a naturally-occurring basic compound) can be added to acidic lakes to "cancel out" the acidity. This process, called liming, has been used extensively in Norway and Sweden but is not used very often in the United States. Liming tends to be expensive, has to be done repeatedly to keep the water from returning to its acidic condition, and is considered a short-term remedy in only specific areas rather than an effort to reduce or prevent pollution. Furthermore, it does not solve the broader problems of changes in soil chemistry and forest health in the watershed, and does nothing to address visibility reductions, materials damage, and risk to human health. However, liming does often permit fish to remain in a lake, so it allows the native population to survive in place until emissions reductions reduce the amount of acid deposition in the area.
Look to the future
As emissions from the largest known sources of acid deposition - power plants and automobiles-are reduced, EPA scientists and their colleagues must assess the reductions to make sure they are achieving the results Congress anticipated. If these assessments show that acid deposition is still harming the environment, Congress may begin to consider additional ways to reduce emissions that cause acid deposition. They may consider additional emissions reductions from sources that have already been controlled, or methods to reduce emissions from other sources. They may also invest in energy efficiency and alternative energy. The cutting edge of protecting the environment from acid deposition will continue to develop and implement cost-effective mechanisms to cut emissions and reduce their impact on the environment.
Take action as individuals
It may seem like there is not much that one individual can do to stop acid deposition. However, like many environmental problems, acid deposition is caused by the cumulative actions of millions of individual people. Therefore, each individual can also reduce their contribution to the problem and become part of the solution. One of the first steps is to understand the problem and its solutions.
Individuals can contribute directly by conserving energy, since energy production causes the largest portion of the acid deposition problem. For example, you can:
• Turn off lights, computers, and other appliances when you're not using them
• Use energy efficient appliances: lighting, air conditioners, heaters, refrigerators, washing machines, etc.
• Only use electric appliances when you need them.
Keep your thermostat at 68 F in the winter and 72 F in the summer. You can turn it even lower in the winter and higher in the summer when you are away from home.
• Insulate your home as best you can.
• Carpool, use public transportation, or better yet, walk or bicycle whenever possible
• Buy vehicles with low NOx emissions, and maintain all vehicles well.
• Be well-informed.